ObservationSchemes.jl
ObservationSchemes.AllObservations
ObservationSchemes.FirstPassageAbstract
ObservationSchemes.FirstPassageTimeInfo
ObservationSchemes.GeneralObs
ObservationSchemes.GsnStartingPt
ObservationSchemes.KnownStartingPt
ObservationSchemes.LinearGsnObs
ObservationSchemes.NoFirstPassageTimes
ObservationSchemes.ObsScheme
ObservationSchemes.Observation
ObservationSchemes.ParametrizedObservation
ObservationSchemes.StartingPtPrior
Base.collect
Base.eltype
Base.eltype
Base.length
Base.length
Base.rand
Base.rand
Base.rand
Base.rand
Base.rand
Base.rand
Base.rand
Base.size
Base.size
Distributions.logpdf
Distributions.logpdf
Distributions.logpdf
ObservationSchemes.L
ObservationSchemes.L
ObservationSchemes._prepare_xx
ObservationSchemes.add_dependency!
ObservationSchemes.add_dependency!
ObservationSchemes.add_recording!
ObservationSchemes.add_recording!
ObservationSchemes.add_recordings!
ObservationSchemes.add_recordings!
ObservationSchemes.build_recording
ObservationSchemes.build_recording
ObservationSchemes.build_recording
ObservationSchemes.check_recording_format
ObservationSchemes.fill_dependency_for_unspec_params_and_obs
ObservationSchemes.fpt_info
ObservationSchemes.initialize
ObservationSchemes.initialize
ObservationSchemes.inv_start_pt
ObservationSchemes.inv_start_pt
ObservationSchemes.inv_start_pt
ObservationSchemes.inv_start_pt
ObservationSchemes.load_data
ObservationSchemes.load_data
ObservationSchemes.load_data
ObservationSchemes.local_symbols
ObservationSchemes.new_obs_dependence!
ObservationSchemes.new_param_and_obs_dependence!
ObservationSchemes.new_param_dependence!
ObservationSchemes.num_obs
ObservationSchemes.num_recordings
ObservationSchemes.obs
ObservationSchemes.package
ObservationSchemes.parameter_names
ObservationSchemes.print_parameters
ObservationSchemes.print_parameters
ObservationSchemes.setup_time_grids
ObservationSchemes.setup_time_grids
ObservationSchemes.setup_time_grids
ObservationSchemes.split_recording!
ObservationSchemes.start_pt
ObservationSchemes.start_pt
ObservationSchemes.start_pt
ObservationSchemes.start_pt
ObservationSchemes.start_pt
ObservationSchemes.start_pt
ObservationSchemes.start_pt
ObservationSchemes.Λ
ObservationSchemes.Σ
ObservationSchemes.Σ
ObservationSchemes.μ
ObservationSchemes.μ
ObservationSchemes.ν
ObservationSchemes.ν
ObservationSchemes.add_dependency!
— Methodadd_dependency!(all_obs::AllObservations, dep::Dict)
Add a dependency structure dep
between parameters shared across various laws and observations used to generate various recordings stored in an observations container all_obs
.
ObservationSchemes.add_recording!
— Methodadd_recording!(all_obs::AllObservations, recording::NamedTuple)
Add a new recording recording
to an observations container all_obs
.
ObservationSchemes.add_recordings!
— Methodadd_recordings!(
all_obs::AllObservations,
recordings::AbstractArray{<:NamedTuple}
)
Add multiple new recordings recordings
to an observations container all_obs
.
ObservationSchemes.build_recording
— Methodbuild_recording(P, obs, t0, x0_prior)
A utility function that creates an appropriate NamedTuple
that represents a single recording.
ObservationSchemes.build_recording
— Methodbuild_recording(
::Type{K}, tt, observs::Vector, P, t0, x0_prior; kwargs...
) where K
A utility function for building a recording. Times of recordings are assumed to be stored in tt
and their values in observs
. K
is the type of observation (for instance LinearGsnObs
). kwargs
are name arguments that are passed to every single initializer of K
.
ObservationSchemes.fpt_info
— Methodfpt_info(::LinearGsnObs{D,T,Tag,FPT}) where {D,T,Tag,FPT}
Return information about first-passage times
ObservationSchemes.initialize
— Methodinitialize(all_obs::AllObservations)
Split the recordings at the times of full observations to make full use of the Markov property (and make the code readily parallelisable). Introduce all variable parameters that were not mentioned in the current dependency dictionary. Create internal dictionaries all_obs.param_depend_rev
and all_obs.obs_depend_rev
.
ObservationSchemes.load_data
— Methodload_data(os::ObsScheme, tt, xx)
Decorate the data in xx
and times of recordings in tt
according to an observation scheme template stored in os
.
ObservationSchemes.load_data
— Methodload_data(os::ObsScheme, tt_xx)
Same as load_data(os::ObsScheme, tt, xx)
, but tt_xx
is a vector of tuples that pair the observations with their recorded times.
load_data(os::ObsScheme, tt_xx_filename::String)
Same as above, but tt_xx
are stored in a .csv file named tt_xx_filename
, with each row containing time t
and its respective observation x
stored back-to-back.
ObservationSchemes.print_parameters
— Methodprint_parameters(all_obs::AllObservations)
Print information about the variable parameters about which the all_obs.param_depend
object stores some interdependency information.
ObservationSchemes.FirstPassageAbstract
— TypeFirstPassageAbstract
Types ihneriting from this struct define the type of information stored about first-passage times
ObservationSchemes.ParametrizedObservation
— TypeParametrizedObservation{D,T} <: Observation{D,T}
Same as observations but additionally, types inheriting from this struct depend on some parameters (that may in practice be unknown).
Base.eltype
— Methodeltype(::Type{K}) where {K<:Observation{D,T}}
Type of each entry of the collection holding an observation.
Base.length
— Methodlength(::Type{K}) where {K<:Observation{D}}
Length of the observation (equal to a number of entries in a vector holding the data)
Base.rand
— Functionrand([rng::Random.AbstractRNG], G::GsnStartingPt, z, ρ=0.0)
Sample new white noise using Crank-Nicolson scheme with memory parameter ρ
and a previous value of the white noise stored inside object G
Base.rand
— FunctionBase.rand(G::StartingPtPrior, [z, ρ=0.0])
Sample a new starting point according to its prior distribution. An implementation with arguments z
, ρ
implements a preconditioned Crank-Nicolson scheme with memory parameter ρ
and a current non-centered variable z
. z
is also referred to as the driving noise.
Base.rand
— Methodrand([rng::Random.AbstractRNG], G::GsnStartingPt)
Sample new starting point according to its prior distribution.
Base.rand
— Methodrand([rng::Random.AbstractRNG], G::KnownStartingPt, args...)
Starting point is known. Nothing can be sampled. Returning known starting point.
Base.rand
— MethodBase.rand([rng::Random.AbstractRNG], o::LinearGsnObs, X)
Sample an observation according to
with $L$, $μ$ and $Σ$ defined in o
.
Base.size
— Methodsize(::Type{K}) where {K<:Observation{D}}
Size of the observation
Distributions.logpdf
— Methodlogpdf(G::GsnStartingPt, y)
log-probability density function evaluated at y
of a prior distribution G
Distributions.logpdf
— Methodlogpdf(::KnownStartingPt, y)
Nothing to do so long as y
is equal to the known starting point inside G
ObservationSchemes.L
— MethodL(o::LinearGsnObs)
Return matrix L from the observation scheme ν = Lx+ξ, where ξ∼N(μ,Σ)
ObservationSchemes._prepare_xx
— Method_prepare_xx(::Val, os::ObsScheme, X)
Cycle through a collection X
and transform it according to the observation schemes specified in os
.
ObservationSchemes.check_recording_format
— Methodcheck_recording_format(::T) where T<:NamedTuple
Check whether the namedtuple has fields P
, obs
, t0
and x0_prior
that each recording must have.
ObservationSchemes.fill_dependency_for_unspec_params_and_obs
— Methodfill_dependency_for_unspec_params(all_obs::AllObservations)
Fill the all_obs.depen_param
dictionary with all parameters that are not shared between recordings.
ObservationSchemes.inv_start_pt
— Methodinv_start_pt(y, G::GsnStartingPt, P)
Compute the driving noise that is needed to obtain starting point y
under prior G
and the likelihood in P
ObservationSchemes.inv_start_pt
— Methodinv_start_pt(y, G::KnownStartingPt, P)
Starting point known, no need for dealing with white noise, use convention of returning y
ObservationSchemes.local_symbols
— Methodlocal_symbols(
all_obs::AllObservations,
objects::AbstractArray{<:AbstractArray},
f::Function,
θsym::Vector{Symbol}
) where T
objects
is usually an array of arrays that must in total have the same number of elements as there are observations in the recording. It may however have a different jagged structure. The output is of the same structure as objects
and gives for each o
in object
a corresponding lists of parameters and observations it depends on.
ObservationSchemes.new_obs_dependence!
— Methodnew_obs_dependence!(old_dep, old_to_new_idx)
Create a new interdependency dictionary for the observations from the old one old_dep
and the dictionary old_to_new_idx
that kept track of the changes.
Example
old_dep = Dict(
:A => [(1, 2, 1), (1, 3, 2), (2, 1, 1)],
:B => [(2, 2, 2), (3, 2, 1)],
)
old_to_new_idx = Dict(
(1,1) => (1, 1), # obs (1,1) becomes (1,1)
(1,2) => (1, 2),
(1,3) => (2, 1), # obs (1,3) becomes (2,1)
(2,1) => (3, 1),
(2,2) => (4, 1),
(2,3) => (5, 1),
(3,1) => (6, 1),
(3,2) => (6, 2),
)
new_dep = new_obs_dependence!(old_dep, old_to_new_idx)
new_dep == Dict(
:A => [(1, 2, 1), (2, 1, 2), (3, 1, 1)],
:B => [(4, 1, 2), (6, 2, 1)]
)
ObservationSchemes.new_param_and_obs_dependence!
— Methodnew_param_and_obs_dependence!(
out,
old_p_dep,
old_o_dep,
old_to_new_idx,
old_to_new_obs_idx
)
TODO refresh Define a new parameter dependence structure by using an old parameter dependence saved in old_dep
and deducing the changed indices of affected recording by following the old_to_new_idx
dictionary. The new dependency is saved directly to out
structure.
ObservationSchemes.new_param_dependence!
— Methodnew_param_dependence!(old_dep, old_to_new_idx)
Create a new interdependency dictionary for the parameters from the old one old_dep
and the dictionary old_to_new_idx
that kept track of the changes.
Examples
old_dep = Dict(
:A => [(1, :a), (2, :a1)],
:B => [(1, :b), (3, :bbb)],
)
old_to_new_idx = Dict(
1 => [1, 2], # observation 1 was split into two
2 => [3, 4, 5], # observation 2 was split into three
3 => [6],
)
new_dep = new_param_dependence!(old_dep, old_to_new_idx)
new_dep == Dict(
:A => [1=>:a, 2=>:a, 3=>:a1, 4=>:a1, 5=>:a1],
:B => [1=>:b, 2=>:b, 6=>:bbb],
)
ObservationSchemes.parameter_names
— Functionparameter_names
Return names of the parameters of a given object
ObservationSchemes.split_recording!
— Methodsplit_recording!(
recording_idx,
recording,
counter,
out::AllObservations,
old_to_new_idx,
old_to_new_obs_idx,
)
Split a single record recording
at the times of full observations. Save new, splitted recordings in the struct out.
Keep account of the changed indices of the recordings for the recording index <---> parameter dependence
pairs by updating a suitable dictionary old_to_new_idx
, starting the new recording's index at an offset counter
.
ObservationSchemes.start_pt
— Methodstart_pt(z, G::GsnStartingPt, P)
Compute a new starting point from the white noise for a given posterior distribution obtained from combining prior G
and the likelihood encoded by the object P
.
ObservationSchemes.start_pt
— Methodstart_pt(z, G::GsnStartingPt)
Compute a new starting point from the white noise for a given prior distribution G
ObservationSchemes.start_pt
— Methodstart_pt(z, G::KnownStartingPt, P)
Return starting point
ObservationSchemes.start_pt
— Methodstart_pt(G::KnownStartingPt, P)
Return starting point
ObservationSchemes.Λ
— MethodΛ(o::LinearGsnObs)
Return matrix Λ:=Σ⁻¹ from the observation scheme ν = Lx+ξ, where ξ∼N(μ,Σ)
ObservationSchemes.Σ
— MethodΣ(o::LinearGsnObs)
Return matrix Σ from the observation scheme ν = Lx+ξ, where ξ∼N(μ,Σ)
ObservationSchemes.μ
— Methodμ(o::LinearGsnObs)
Return vector μ from the observation scheme ν = Lx+ξ, where ξ∼N(μ,Σ)
ObservationSchemes.ν
— Methodν(o::Observation)
Return the observation